Synthesized Policies for Transfer and Adaptation
across Tasks and Environments

Supplementary Material

Hexiang Hu * Liyu Chen *
University of Southern California University of Southern California
Los Angeles, CA 90089 Los Angeles, CA 90089
hexianghQusc.edu liyuc@usc.edu

Boqing Gong Fei Sha f
Tencent Al Lab Netflix
Bellevue, WA 98004 Los Angeles, CA 90028
boginggo@outlook.com fsha@netflix.com

In this Supplementary Material, we provide details omitted in the main paper:

Section[I} Detailed configurations about GRIDWORLD and THOR simulators.
Section 2} Imitation learning algorithm and optimization details.

Section 3} Reinforcement learning algorithm and optimization details.
Section 4} Implementation details about SynPo and baselines.

Section |5} Additional experimental results to the main text.

1 Details on simulators

1.1 Details about GRIDWORLD Configurations

As we have mentioned in the main text, there are in total 20 environments for this simulator, which
we listed as Figure[9] The tasks presented in this simulator includes a sequential execution of picking
up two treasures in different colors. The agent can observe the layout of the environment inside a 3x3
square centered at the agent’s current position (see Figure[I] (a) for details). The agent can take 5
actions, which includes moving in the four directions and picking up an object right below it. Note
that in each run of a certain given task, the locations of both agent and treasures are randomized.

In terms of the reward setting, we follow the common practice and set the reward for moving one
step to be -0.01 and touching a wall to be an additional - 0.01. Picking up a target treasure gives 1
unit of the reward and completing a task gives 10 unites of the reward. Picking up a wrong target
directly ends an episode and gives reward -10. During the training, we use an optimal planner with
shortest path search algorithm for expert policy. To represent a state for our network, we follow the
practice in DQN [|6] and concatenate the last four observations as the input to the policy.

1.2 Details about THOR Configurations.

THOR [5]] is a 3D robotic simulator developed recently for simulating the indoor environments a robot
could encounter. An agent is working like a real robot with a first-persion view camera, which delivers
RGB images in egocentric view (see Figure [T] (b) for details). The environment has interactable
components that a agent can play with, which enables the learning of human like behaviors such as

*Equal Contribution.
tOn leave from University of Southern California (feisha@usc.edu).

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

(a) Agent’s View in GRIDWORLD

(b) Egocentric View in THOR

Figure 1: Demonstrations of agent’s view in two simulators. In the left, we present the agent’s input
state of GRIDWORLD. An agent only have the vision to its surrounding context and the locations
of all treasures (see (a)). Similarly, in the THOR, an agent has access to an egocentric image that
represents the first-person viewpoint (see (b)).

semantic planning [9]] and indoor navigation [[10]. We describe the concrete settings we used as what
follows.

We extract the image features using convolutional neural networks to represent an observation for
each egocentric view of a robotic agent. Specifically, we extract the activation output from the
penultimate layer of a Resnet101 [3]] pre-trained on ImageNet [1]], which has the dimensionality of
2048. Similar to the GRIDWORLD experiments, we then concatenate those features of the last four
observations as the input to the policy network. The agent can take 7 actions in THOR: move ahead,
turn left, turn right, look up, look down, open/close an object, pick up/put down an object. We set
the reward for moving one step to be -0.01 and executing invalid actions to be -0.01. The reward of
picking up the correct object is 1, and the reward of finishing the task is 10. Picking up the wrong
object and putting the object in the wrong receptacle ends an episode and gives -10 units of the reward.
The interactable objects, receptacles and index of environments (kitchens) are listed in table[T] In our
experiment we selected environments with similar size (see Table[I|for the complete list).

Table 1: interactable objects, receptacles and environment indexes in THOR

Entries Values

Objects Container, Lettuce, Mug, Tomato, Plate, Apple, Bowl
Receptacles Fridge, Microwave, Sink

Environments Kitchen {1, 2, 3,4,5,6,8,9, 11, 12, 18, 22, 23, 24, 25, 27, 28, 20, 30}

2 Imitation Learning Algorithm and Optimization Details

As mentioned in the main text, now we describe the imitation learning algorithm used for learning
SYNPO and all baseline models. The concrete details are presented in Algorithm [T}

In each episode, we sample a trajectory using the expert policy and store it into the replay buffer. At
the end of each episode, we sample 64 trajectories uniformly from the replay buffer to calculate the
total loss. Here, the size of replay buffer for storing expert trajectories is 20,000. In each episode,
we uniformly sample 64 trajectories from the replay buffer (coming from different eand 7pairs) to
compute the loss. We set the hyper-parameters A as follows: there is A; = 0.01 for reward prediction;
A2 = 0.1 and A3 = 0.001 for environment and task disentanglement loss. The dimensionality of
environment embedding and task embedding are 128. Besides, we use Adam [4]] as the optimizer
with the initial learning rate set to be 0.001. Additionally, we set the value of weight decay factor to
be 0.001 in all our experiments.

Algorithm 1 Policy Imitation Learning Algorithm.

Input: Given training simulators simulator(z), where z € (£, 7T)train
Initialize Expert Replay Memory D with the capacity N
for episode = 1, M do

Sample z € (£, T)train

TRAJ, ({s;,a;,7; }; %) = ROLLOUT (wf, simulator(z))

Store TRAJ ({s;, a;,r; }; 7F) to DE

Sample a random mini-batch B with | B | trajectories from D®

Compute gradient V£ and update the parameters with specified optimizer
end for

3 Reinforcement Learning Algorithm and Optimization Details

As mentioned in the main text, we have employed reinforcement learning to further fine-tune our
model, which archived improvement in transfer learning performances. Now we describe the detailed
setups of our experiments. We use PPO [8]] to fine-tune our model. We optimize our model by
RMSProp with learning rate 0.000025 and weight decay 0.0001. We use GAE [7]] to calculate
advantages, with v = 0.99 and A = 0.95, entropy weight is 0.01, rollout length 128, objective
clipping ratio 0.1. Gradient norms are clipped to 0.5. We divide the trajectories collected into 4 mini
batches and do four optimization steps on each update. We fine-tuned our model for 2 x 107 steps.
During RL fine-tuning we also included our disentangling objectives as auxilary loss.

4 Implementation Details

4.1 Details about our Policy Network for SYNPO in GRIDWORLD

First, we introduce the specific setups we used for policy networks in GRIDWORLD. We directly
parameterize the outcome of a dot product between ® and ¢,, as a tensor, for the sake of computation
efficiency in practice. However, our model, as mentioned in the main text, is indeed a bilinear policy.
Therefore, with a more general application scenario that action space (|.A|) is large, we can apply
the original form of our approach and learn separate action embeddings ¢, with the shared basis
©®. The coefficient functions a(-) and 3(-) that compose environment and task embeddings are
one-hidden-layer MLPs with 512 hidden units and output size of 128. The dimension of the state
feature 15 extracted from ResNet before the bilinear weight U is 128. The state feature extractor is a
customized ResNet. Its concrete structure is shown as Table[2] The dimensionality of the environment
embeddings e. and task embeddings e, are 128.

Table 2: Structure of State Feature Function 15 in GRIDWORLD

group name | output size block type stride

input 16 x 16 x 3 - -
3x 3,32

conv 1 8 x 8 x 32 [3><3,32} 2 2
3 x 3,64

conv 2 4x4x64 [3><3,64}X2 2
3x 3,128

conv 3 2 x2x128 {3><37128} 2 2
3 x 3,256

conv 4 2 X 2 x 256 {3><3,256} 2 0

fe 128 [1024 x 128} .

4.2 Details about our Policy Network for SYNPO in THOR

Next we describe the network setups we used in THOR. Again, we directly parameterize the outcome
of a dot product between © and ¢, as a tensor, as the action space is small (].4| = 7) in this simulator.
With the stacked 2, 048 x 4 dimensional ResNet101 feature as input, we learn a two 1-D convolutional
networks with kernel size of 3 and stride of 2, which first reduces the dimensionality of feature
to 1,024 and then aggregates over the temporal axis. Next, the encoding of visual feature is then
concatenated with an embedding (e ;) that represents object the agent is carrying. The concatenated
feature vector is next input into a one-hidden-layer MLP wth hidden state of 2,048 dimension. The
output of this MLP (which is also the final output ofstate feature function 1)5) has dimension of 256.
The concrete config is shown as Table 3| The dimensionality of the environment embeddings e. and
task embeddings e, are 128.

Table 3: Structure of State Feature Function 15 in THOR
group name | output size block type stride

image input | 2048 x 4 - -

conv 1 1024 x 2 [3 w1, 1024} 2

conv 2 1024 x 1 [3 x 1, 1024} 2

concat 1056 concat €opj -
fel 2048 {1056 x 2048J]
fe2 256 [2048 x 256} -

4.3 Details about learning Disentanglement Objective

In addition to both of the above settings, we applied another set of one-hidden-layer MLPs f. and f,
(hidden=512) to represent the auxiliary function that project the high-dimensional trajectory feature
x to the embedding spaces e. and e,. Note that this function is only used in the disentanglement
objective, and could be discarded during the deployment of policy network.

5 Additional Experimental Results

5.1 Complete Details of Main Results and Comparison between Methods

As mentioned in the main text, we put our complete results of GRIDWORLD here. Now we report
not only the average success rate (AvgSR.) but also average reward (AvgReward), on both seen and
unseen pairs.

Table 4: Performance of the best model for each method on GRIDWORLD (Seen/Unseen=144/256).
All algorithms are trained using three random seeds and reported with mean and std. on each (e, 7)
pair, we sample the locations of agent and treasures for 100 times to evaluate the performances.
Method \ SF ModuleNet MLP MTL | SYNPO
AvgSR. (SEEN) | 0.0 +£0.0% 509 +33.8% 69.0+2.0% 64.1£12% |83.3+0.5%
AvgSR. (UNSEEN) | 0.0 £0.0% 304 £20.1% 66.1 £2.6% 41.5+1.4% | 82.1+1.5%

We found that the trend of average reward on seen and unseen splits are quite similar to the trend
of average success rate. We also note that the reward for successor feature (SF) is stable around
-3, which indicated that the agent only tries to avoid negative reward and refuse to learn getting
positive reward. On the contrary, all methods that make progress later starts with a lower average
reward, meaning that the agent tries to complete the task by picking up objects but failed a lot at the
beginning.

— MLP — MLP

8 — MTL — ML
ModuleNet ModuleNet
— SF 6 —— SF
6
SynPo SynPo
4 4
2 2
,:’
PGS~ P
0 0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(a) AvgSR. over Time on SEEN (b) AvgSR. over Time on UNSEEN
v
0 — wmpP — MLP
5 —— MTL 5 —— MTL
ModuleNet 0 ModuleNet
0 — s — sF
5 SynPo 5 SynPo
’
0 t 0
5 5
0 0
5 A ,: 5
N RAND
0 0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(c) AvgReward over Time on SEEN (d) AvgReward over Time on UNSEEN

Figure 2: Results on GRIDWORLD. (a)-(b): Comparison between average success rate (ASR.) of
algorithms on seen split and unseen split. (c)-(d): Comparison between average accumulated reward
(AvgReward.) of algorithms in each episode on seen split and unseen split. Results are reported on
the setting with |€| = 20 and | T| = 20. For each intermediate performance, we sample 100 (¢, 7)
combinations and test one configuration to evaluate the performances. We evaluate models trained
with 3 random seeds and report results in terms of the mean AvgSR and its standard deviation.

, A MY . Y
8 - \/\ J\N'vw‘“\/\'\r\/\/‘-"ﬂ A \/v Y 8 V\,’V‘N\P- /I\/‘VV'\'\”V\' V\\jhf"k‘
[N

6 A —— SynPo w/o EnvDisentg 6 V‘ —— SynPo w/o EnvDisentg
J —— SynPo w/o TaskDisentg | —— SynPo w/o TaskDisentg
4 SynPo 4 SynPo
—— Synpo w/o Disentg —— Synpo w/o Disentg
2 l/ 2
wNIARANPPRNA i aoMAN A)
0 0 s
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(a) AvgSR. over Time on SEEN (b) AvgSR. over Time on UNSEEN
0
0 At Y AN A7 A A
M AAMA A / AV ALHOM
NN A VY 5 J./\,W\rw/
5 /\I 0 '\/
J —— SynPo w/o EnvDisentg 5 y —— SynPo w/o EnvDisentg
—— SynPo w/o TaskDisentg —— SynPo w/o TaskDisentg
0 SynPo 0 SynPo
| —— Synpo w/o Disentg 5 —— Synpo w/o Disentg
5 0
/)
Mo A GAIAo MU ° Wity sty AP oo MDA
0 0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(c) AvgReward over Time on SEEN (d) AvgReward over Time on UNSEEN

Figure 3: An ablation study about our learning objectives. We report the results of the ablated
versions without the disentanglement loss (Disentg) on environment (EnvDisentg) and on task
(TaskDisentg). (a)-(b): Comparison between average success rate (ASR.) of algorithms on SEEN
split and UNSEEN split. (c)-(d): Comparison between average accumulated reward (AvgReward.)
of algorithms in each episode on SEEN split and UNSEEN split. Results are reported on the setting
with |€| = 20 and |T| = 20. Similarly, for each intermediate performance, we sample 100 (g, 7)
combinations to evaluate the performances.

Specifically, we find that SYNPO is consistently performing better across all metrics, in terms of both
the convergence and final performance. On the seen splits, MTL and MLP have similar performances,
while MTL has a much worse generalization performance on unseen splits, comparing to MLP,
possibly due to over-fitting or the lack of the capability in recognizing environments. At the same
time, it is worth noting that Module Network has a significantly larger variance in its performances,
comparing against all other approaches. This is possibly due to the fact that the environment modules
and task modules are adhered together during the inference, where instability could occur. Similar
issue has also been reported by Devin ef al. [2]]. In addition, even in the best performing cases,
ModuleNet could achieve a similar performances comparing to MLP and still far from approaching
SYNPO’s performance.

5.2 Ablation Studies of the Learning Objectives

How does each component in the objective function of our approach affect the performance of our
model? Figure [3| shows that the task disentanglement loss is crucial for achieving good success
rates on either seen or unseen pairs. This is probably because the differences between tasks are very
subtle, making the agent hard to find the right distinct embeddings for them without the explicit task
disentanglement loss. In contrast, the approach without the environment disentanglement loss can
still reach a high success rate though it converges a bit slower.

5.3 Details on Transfer Learning Experiments

As mentioned in the main text, here we include the complete splits for the transfer learning study
(Experiments evaluated the transfer learning result w.r.t. ratio # of seen vs.# of total). The success
rate of our method on each pair is marked on the matrices. The full success rate matrices are shown
as Figure 4 and Figure 5.

Specifically we case study the situation when this ratio is 0.2. The detailed transfer learning per-
formance is shown as Figure[6] Here each row corresponds to a task and each column corresponds
to an environment. The red grids represents the unseen pairs and the purple grids represents the
seen pairs. We mark the average success rate (over 100 runs of evaluations) in the grid to better
quantitatively identify the performance at a pair of (¢, 7). The darker the color of a grid is, the better
the corresponding performance. We can see that with the row “(O, R)” and column “env_0", although
only entry along the row and column is seen by the model, the transfer learning performance does not
fail completely. Instead, many entries along the row and column have a superior success rate. This
supports our claim about disentanglement of the environment and task embedding, and at the same
time indicates the success in the learning compositionality.

5.4 Details on Experiments of transfer setting 2 and setting 3

In this section, we describe the details of transfer learning settings. In both the setting 2 of “Incre-
mental learning of small pieces and integrating knowledge later” and setting 3 of “Learning in giant
jumps and connecting dots”, we fix all parameters of the policy basis pre-trained on P and fine-tune
the network to learn new (randomly initialized) embeddings for environments and tasks. In this stage,
we use only one demonstration from each (g, 7) pair to fine-tune the embedding and find that our
network is able to generalize to new environment or/and task.

Concretely, we randomly initialize the 10 new environment embeddings and the 10 new task em-
beddings for additional learning. In the transfer setting 2, we sample only one expert trajectory as
demonstration data for each (e, 7) pair in the upper right and lower left quadrant. In the transfer
settings 3, we sample only one expert trajectory as demonstration data for each (g, 7) pair in the lower
right quadrant. Following the same routine Algorithm 1, we train the embeddings for 10000 iterations
and then test the performance of models on the entire matrix of (g, 7) pairs. The result is shown
as Figure[8] Besides what we have mentioned in the main text, we plot a more visually discernible
success rate matrices as Figure 8| (a) and (b). We observe that in both cases, transfer learning across
the task axis is easier comparing to the environment axis, given the results.

5.5 An extreme studies about the effectiveness of environment embeddings.

As mentioned in the main text, to study the effectiveness of the environment embedding, we run an
additional experiment as a sanity check. In this setting, we made agent’s observation window size

(a) 10 Train and 90 Test (b) 20 Train and 80 Test

('R, 'B") 0.10 0.20 0.10 0.10 0.30 0.40 0.20 0.10 0.00 (R, 'B") SRy 0.20 0.10 0.00

0.00 0.00 0.00 0.20 0.30 0.10 0.00 0.10 ('B','G")

('8, 'G") 0.20 0.10

(6, 'on1 0.10 0.00 0.20 0.00 0.00 0.30 0.00 (G, '0) 0.30 0.20

0.00

(o, 'P){ 0.00 0.00 0.00 0.20 0.00 0.20 0.20 (o', 'P) 0.30

(e, 'R){ 0.40 0.00 0.00 0.20 0.30 0.00 0.00 0.30 0.10 (P, 'R) (N 1.00 0.90

(r,'6{ 0.30 0.00 0.00 0.00 0.20 0.30 0.10 0.00 (R,'6¢){ 030 0.30 0.20 0.20

o, ,. 030 - 030

(¢e,'P){ 0.40 020 0.10 0.10

¢s8,'0){ 0.10 0.30 0.10 0.00 0.00 0.10

¢e,'p){ 020 0.10 0.10 0.00 0.10 0.10

(o, 'R){ 0.10 0.00 0.00 0.00 0.10 0.00 (o, 'R)

p,87{ 040 020 0.10 0.00 020 0.10 P, B

v
7

o,
K

(d) 40 Train and 60 Test

0.80 1.00 0.90 1.00 1.00 0.90

0.90 0.80 0.90 0.80 1.00 0.70 0.90 1.00 1.00 0.80

0.80 O.BOMI.OO 1.00 1.00

0.90 1.00 0.90 1.00 0.90 0.70

0.90 0.90 gON 0.70 0.70 0.80

1.00 0.90 (R:[URRR-lO 0.30 0.40

0.70 1.00 O. 1.00 0.90 0.90 0.70 0.70 0.90 0.80 1.00

0.70 0.90 0.80 1.00 0.80

0.90 1.00 WOBO 0.80
0:70 RORVERGRIGE 1.00 0.90 0.90“1.00

1.00 1.00 0.90 0.90 0.70 1.00 1.00

3 0.90 0.70 1.00 0.70 0.90 1.00 m

1.00 0.90 1.00 1.00 1.00

0.80 '0.70 1.00 1.00 0.90

0.90

[X:N 0.30

b4

3
&

Figure 4: Average test success rate on each environment-task combination. Blue grids represent seen
combinations and red grids represent unseen combinations

to be 1, which made agent only capable of seeing itself and the location of treasures on the map,
without any knowledge about the maze. We denote this agent as a “blind” agent. Therefore, such a
agent would need to remember the structure of the maze to perform well under this circumstance.
We follow our original imitation training process as well as evaluation process and tested three
representative methods in this setting, and plot the results as Table[5] As we have expected, we
observe that algorithms such as MTL which do not distinguish between environments would fail
severely. It could still success in some cases such as the treasures are generated at the same room as
the agent, or very close by. With the additional environment embedding, a simple algorithm such as
MLP could significantly outperforms this degenerated multi-task model. In addition, SYNPO can
achieve almost as good as it was in the normal circumstance, demonstrating its strong capability in
memorizing the environment.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248-255. IEEE, 2009.

[2] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network policies

(a) 50 Train and 50 Test (b) 60 Train and 40 Test

0.90 0.70 1.00 0.70 0.80 1.00 1.00 0.90

1.00 0.90 1.00 1.00 0.80 1.00 1.00 0.80

0.90 0.90 0.90 1.00 1.00 0.80 1.00 0.80

0.70 0.90 ' 0.70

1.00 0.90 0.90 1.00 1.00
0.90 1.00 1.00 0.90 0.80 0.80 0.90 0.70

0.80 0.90

0.90 1.00 1.00 1.00 0.70

1.00 1.00 0.90 0.90 1.00 1.00 1.00

0.90 0.90 0.90 0.80 1.00 1.00 0.90

(¢) 70 Train and 30 Test

0.90 0.90 1.00 0.90

1.00 1.00 0.90
1.00 0.80 0.80
0.80 1.00 1.00
0.90 1.00 1.00

1.00 1.00

0.90

0.80

0.70 1.00

0.80 1.00 1.00

b4

3
&

Figure 5: Average test success rate on each environment-task combination. Blue grids represent seen
combinations and red grids represent unseen combinations

Table 5: Performance of SynPo, MTL and MLP on GRIDWORLD (SEEN/UNSEEN=144/256) with
window size = 0. All algorithms trained are trained using three random seeds and reported with mean
and std.
Method \ MLP MTL | SYNPO
AvgSR. (SEEN) [568 +£09% 164+04% | 809 +1.5%
AvgSR. (UNSEEN) | 51.8 £1.7% 6.1 £0.2% | 76.8 £ 1.4%

for multi-task and multi-robot transfer. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 2169-2176. IEEE, 2017.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

[4] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[5] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. CoRR, abs/1712.05474, 2017.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

(G, '0")

o', P

('P', 'R")
(R, 'G")
(G, 'p){ 0.40

(o', 'R){ 0.40 0.00

cp,'8)7 0.10 0.30 0.30

S
&

™
S 37 o ?
& & &

7 e
&

9
7

© £ 9
’ ’ 7

S 3 S S
& & & &

Figure 6: Case study for a situation when the ratio of # of combinations seen and the total is 0.2

[7

—

(8]
(9]

(10]

D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518:529-533, 2015.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using
generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, and A. Farhadi. Visual semantic
planning using deep successor representations. In Proceedings of the IEEE International Conference on
Computer Vision, volume 2, page 7, 2017.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual
navigation in indoor scenes using deep reinforcement learning. 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 3357-3364, 2017.

— MLP g — MLP

8 —— MTL — MTL
SynPo SynPo
6
6
4 4
2 2
0 0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(a) AvgSR. on SEEN Split (b) AvgSR. on UNSEEN Split
0T= MLP 5T MLP
5 —— MTL — MTL
o SynPo 0 SynPo
5 5
0 0
5 5
o 0
5 O 5 <:f
0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
iteration iteration
(c) AvgReward on SEEN Split (d) AvgReward on UNSEEN Split

Figure 7: Results of “A blind agent scenario”” on GRIDWORLD with window size of 0. (a)-(b):
Comparison between average success rate (ASR.) of algorithms on seen split and unseen split. (c)-(d):
Comparison between average accumulated reward (AvgReward.) of algorithms in each episode on
seen split and unseen split. Results are reported on the setting with |£| = 20 and |T| = 20. For each
intermediate performance, we sample 100 (¢, 7) combinations and test one configuration to evaluate
the performances. We evaluate models trained with 3 random seeds and report results in terms of the
mean AvgSR and its standard deviation.

10

('R, 0.90 E 0.20 D.lO.DvDO 0.40 0.20 O.IOF

('', 1.00 .00 0.30 010 030 040 020 0.00 0.00

('Gg', . 1.00 9 B 040 030 0.30 0.20 0.20 0.20 0.10 0.00
(o', 0.90 E 0.90 0. 030 0.10 020 020 040 010 0.00 0.00 0.10
(e, E 1.00 1.00 0 0. & 010 0.10 0.10 0.20 0.30 040 0.00 0.10 0.00
('R, 0.80 0 1.00 040 010 020 0.10 030 0.00 000 0.00
('B', 0.90 1.00 & 020 030 0.0 0.40 0.40 0.10 0.00 0.10

('G', X i 0.90 0. B 030 0.40 0.00 020 0.00 0.00

(o', . 0.90 1.00 010 0.10 0.20 0.20 0.40 020 010 0.20
e, 0 X 1.00 0 0.90 1.00 K 0.20 0.40 020 020 0.30 0.00

0.10 0.20 0.20 0.00 0.00 0.0

000 020 010 000 010 020 0.0 0.0 0.10
('G', 0.80 E . 020 0.10 010 020 0.20 . 0.20 0.00 0.00
010 020 0.10 0.0 0.0 040 0.00 0.10 0.10
0.20 0.40 BONLN 0.10 0.10 0.00 0.10 0.0 0.10
020 020 010 010 0.10 030 0.00 0.10 0.00

010 020 020 0.00 020 030 0.0 0.00 0.20

('G' 020 020 020 0.00 010 0.00 010 000 010 000 010 0.10
(o, 0.40 010 020 020 0.20 0.30 030 040 020 0.10 0.00
('P' 0.40 0.40 000 010 030 010 010 030 030 000 010 0.00
© A o \d ©
&S e“"‘?c“‘ R e s‘? s‘?s‘?o‘? 6‘7 éé o"7 o‘s« o“?e 2
L2 2 A 2 2 A N A 2
(a) Transfer Setting 2
('R', 1.00 100 1.00 1.00 090 1.00 1.00 040 020 030 020 010 040 0.10 040 0.10 0.00
('B', 1.00 1.00 0.80 0.80 0.90 1.00 ! .20 030 020 030 010 020 . 0.00 0.00 0.10
('G", 1.00 090 0.90 0.90 0.80 1.00 ! (Nl 030 020 010 020 020 030 020 020 0.10 0.00
(o, 1.00 090 1.00 1.00 100 | 0. b .20 030 040 030 020 040 020 000 0.00 0.20
e, 090 090 0.70 080 1.00 .9 E 020 010 010 020 0.00 . 010 0.00 010 0.00
('R, 090 1.00 0.90 0.0 0.80 i d 020 020 000 010 010 020 030 030 020
('B', 0.90 0.90 0.80 0.90 010 030 020 010 030 020 010 010 0.10
('G', 0.90 ! .30 010 010 010 000 010 030 010 0.00 0.10
(o, 0.90 0.90 .20 040 030 010 020 030 030 020 010 0.30
(P, 1.00 1.00 090 1.00 0.90 .00 .10 020 030 030 020 . 020 0.00 030 020
('R' 030 010 010 0.00 040 030 020 020 0.10
('B' 0.00 020 020 020 040 030 000 0.00 0.00
(G, 010 020 0.00 0.00 020 040 020 0.00 0.00
(o, 010 000 020 010 010 0.00 000 0.10 0.00
P, 000 010 010 010 010 030 0.10 0.10 0.40
('R" 020 040 040 0.0 010 020 010 010 020 020 020 010 020
('B', 030 . 0.40 0.20 0.00 010 000 030 010 010 000 0.00 0.0
('G' 010 030 030 0.40 010 030 030 020 010 010 0.00 0.0 0.00 000 0.00 010 0.00
('o', 'G') 0.70 0.80 0.40 0.00 040 0.10 0.40 0.00 030 000 0.00 0.10
('p', '0") 030 030 040 040 010 040 020 010 000 010 020 010 040 000 0.00 0.10 | 0.40

L
3

S A 12 % & 6 6 A o S W b D A 5 O A D O
S S S S S S S SE VAN AT SIS S S5R0 SIS SN0 SRS 4500 ¢

/«5‘4 ST S S S S S
(b) Transfer Setting 3

Figure 8: Visualizing the effectiveness transferring. Average success rates are marked in the grid (more visually
discernible plots are in the Suppl. Materials). The purple cells are from () set and red cells represents the rest.
The darker the color is, the better the corresponding performance.

11

S5
3k
-

Env 1 Env 2 Env 3 Env 4

it
A

Env 5 Env 6 Env 7 Env 8

i

B
H

Env 9 Env 10 Env 11 Env 12

e
H
]
£

Env 13 Env 14 Env 15 Env 16

H
£
it
it

Env 17 Env 18 Env 19 Env 20

Figure 9: Visualization of the environments we used for GRIDWORLD experiments. The environments
we used are very different against each other, thus placed a substantial challenge for agent to
generalize. (Note that agent’s and objects’ positions are randomized.)

	Details on simulators
	Details about gridworld Configurations
	Details about thor Configurations.

	Imitation Learning Algorithm and Optimization Details
	Reinforcement Learning Algorithm and Optimization Details
	Implementation Details
	Details about our Policy Network for SynPo in gridworld
	Details about our Policy Network for SynPo in thor
	Details about learning Disentanglement Objective

	Additional Experimental Results
	Complete Details of Main Results and Comparison between Methods
	Ablation Studies of the Learning Objectives
	Details on Transfer Learning Experiments
	Details on Experiments of transfer setting 2 and setting 3
	An extreme studies about the effectiveness of environment embeddings.

