Diverse Sequential Subset Selection for Supervised Video Summarization

Boqing Gong†*, Wei-Lun Chao†*, Kristen Grauman‡, and Fei Sha† †University of Southern California, ‡University of Texas at Austin

Highlight

- Pose video summarization as a supervised learning problem for subset selection
- Propose sequential determinantal point process (seqDPP) as the underlying probabilistic model
- Evaluate on three video summarization tasks and obtain state-of-the-art performance

Introduction

Video summarization: pressing need

- 100 hours of new Youtube video per min
- 422,000 CCTV cameras in London 24/7

Summaries by three users

Challenges

- Heterogeneous subjects/categories
- Various temporal changing rates
- Subjective, disparate, and noisy labels

Previous work

- Criteria: representativeness vs. diversity
- Largely unsupervised, frame clustering
- Require sophisticated handcrafting

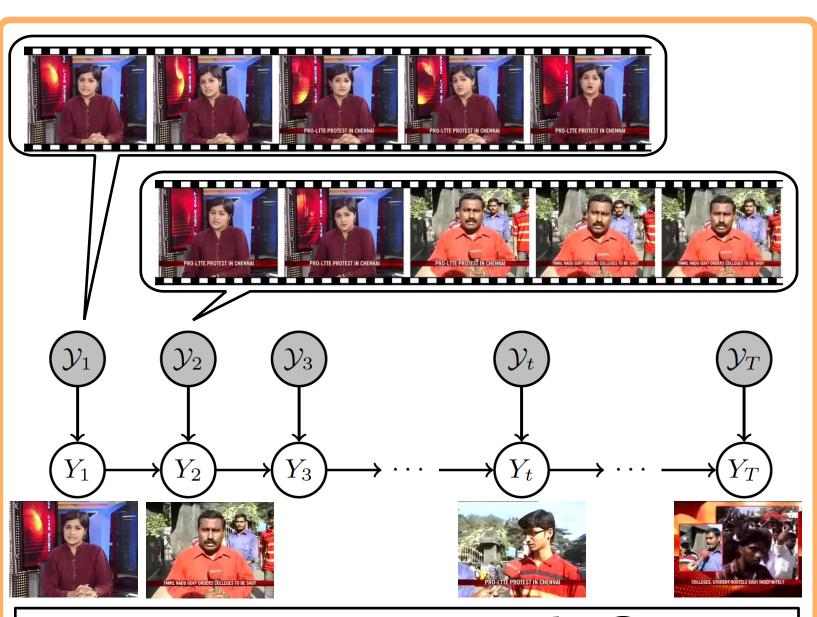
Our main idea

- Supervised learning from human supplied annotations
- Summarization as subset selection
- Modeling temporal cue & diversity

Approach

Sequential DPP (seqDPP)

- 1. Partition video into *T* disjoint segments
- 2. Introduce subset selection (of frames) variable Y_t for each segment
- 3. Condition Y_t on $Y_{t-1} = y_{t-1}$ by DPP



$$P(Y_t = m{y}_t | Y_{t-1} = m{y}_{t-1}) = rac{\det m{\Omega}_{m{y}_{t-1} \cup m{y}_t}}{\det (m{\Omega}_t + m{I}_t)}$$
 $m{\Omega}_t$: kernel over ground set $m{\mathcal{Y}}_t \cup m{y}_{t-1}$

Parameterization of DPP kernel

- Linear embedding (L): $f_i^T W^T W f_i$
- Neural networks (NN)

Inference

$$y_1^* = \arg \max_{\boldsymbol{y} \in \mathcal{Y}_1} P(Y_1 = \boldsymbol{y})$$

$$y_2^* = \arg \max_{\boldsymbol{y} \in \mathcal{Y}_2} P(Y_2 = \boldsymbol{y} | Y_1 = \boldsymbol{y}_1^*)$$

Learning via MLE

- through gradient descent

In contrast, bag DPPs:

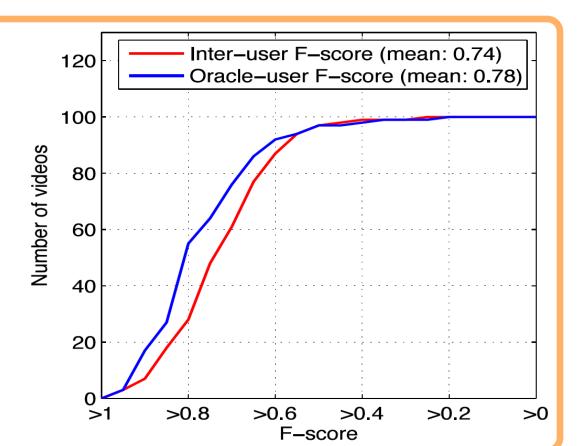
Model permutable items (no temporal info) Often use quality-diversity kernel (limited) Inference NP hard

Generating target summaries

User study on inter-annotator agreement

- Data: 100 videos from Open Video Project and Youtube
- Annotation: 5 user summaries per video
- Observation: high inter-annotator agreement

Generate target summaries by greedy search



Experiments

Setup

- Data: OVP (50), Youtube (39), Kodak (18)
- Feature: Fisher vector, saliency, context
- Evaluation: Precision, Recall, F-score
- Comparison: bag DPP and previous (unsupervised) DT, STIMO, VSUMM

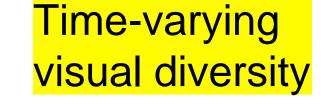
Results on Youtube and Kodak

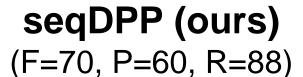
	VSUMM2			Ours (L)			Ours (NN)		
	F	Р	R	F	Р	R	F	Р	R
Youtube	55.7	59.7	58.7	57.8	54.2	69.8	60.3	59.4	64.9
Kodak	68.9	75.7	80.6	75.3	77.8	80.4	78.9	81.9	81.1

Results on OVP

	F	Р	R	
DT	57.6	67.7	53.2	
STIMO	63.4	60.3	72.2	
VSUMM1	70.3	70.6	75.8	
VSUMM2	68.2	73.1	69.1	
bag DPP	70.8±0.3	71.5±0.4	74.5 ±0.3	
Ours + Q/D	68.5 ±0.3	66.9 ±0.4	75.8 ±0.5	
Ours (L)	75.5±0.4	77.5 ±0.5	78.4 ±0.5	
Ours (NN)	77.7 ±0.4	75.0±0.5	87.2 ±0.3	
·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Target summary





VSUMM1

(F=59, P=65, R=55)

Coping with time-varying diversity: seqDPP better than VSUMM

[1] S. Avila, A. Lopes, A. Luz Jr, A. Araujo. "VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method". Pattern Recognition Letters, 32(1):56–68, 2011.

[2] A. Kulesza and B. Taskar. "Determinantal point processes for machine learning". Foundations and Trends® in Machine Learning, 5(2-3):123–286, 2012.