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Abstract

Deep convolution neural network has achieved great
success in many artificial intelligence applications. How-
ever, its enormous model size and massive computation
cost have become the main obstacle for deployment of such
powerful algorithm in the low power and resource limited
embedded systems. As the countermeasure to this prob-
lem, in this work, we propose statistical weight scaling and
residual expansion methods to reduce the bit-width of the
whole network weight parameters to ternary values (i.e.
-1, 0, +1), with the objectives to greatly reduce model
size, computation cost and accuracy degradation caused
by the model compression. With about 16× model com-
pression rate, our ternarized ResNet-32/44/56 could out-
performs full-precision counterparts by 0.12%, 0.24% and
0.18% on CIFAR-10 dataset. We also test our ternarization
method with AlexNet and ResNet-18 on ImageNet dataset,
which both achieve the best top-1 accuracy compared to re-
cent similar works, with the same 16× compression rate.
If further incorporating our residual expansion method,
compared to the full-precision counterpart, our ternarized
ResNet-18 even improves the top-5 accuracy by 0.61% and
merely degrades the top-1 accuracy only by 0.42% for Ima-
geNet dataset, with 8× model compression rate. It outper-
forms the recent ABC-Net by 1.03% in top-1 accuracy and
1.78% in top-5 accuracy, with around 1.25× higher com-
pression rate and more than 6× computation reduction due
to the weight sparsity.

1. Introduction

Deep convolutional neural networks (CNNs) have taken
an important role in artificial intelligence algorithm which
has been widely used in computer vision, speech recog-
nition, data analysis and etc [9]. Nowadays, deep CNNs
become more and more complex consisting of more lay-
ers, larger model size and denser connections. However,

from the hardware acceleration point of view, deep CNNs
still suffer from the obstacle of hardware deployment due to
their massive cost in both computation and storage. For in-
stance, VGG-16 [15] from ILSVRC 2014 requires 552MB
of parameters and 30.8 GFLOP per image, which is difficult
to deploy in resource limited mobile systems. Research has
shown that deep CNN contains significant redundancy, and
the state-of-the-art accuracy can also be achieved through
model compression [6]. Many recent works have been pro-
posed to address such high computational complexity and
storage capacity issues of existing deep CNN structure us-
ing model compression techniques.

As one of the most popular model compression tech-
nique, weight quantization techniques are widely explored
in many related works [6,13,16–18] which can significantly
shrink the model size and reduce the computation complex-
ity. It is worthy to note that weight binarization (-1, +1) or
ternarization (-1, 0, +1) is more preferred compared to other
methods since floating point multiplication is not needed
and most complex convolution operations are converted to
bit-wise xnor and bit-count operations, which could greatly
save power, area and latency. Meanwhile, it does not mod-
ify the network topology or bring extra computation to the
system, which may increase hardware deployment com-
plexity, such as pruning or hash compression. However, for
compact deep CNN models that are more favored by hard-
ware deployment, the existing aggressive weight binariza-
tion or ternarization methods still encounter large accuracy
degradation for large scale benchmarks.

In this work, we propose statistical weight scaling and
residual expansion methods to convert the entire network
weight parameters to ternary format (i.e. -1, 0, +1), with ob-
jectives to greatly reduce model size, computation cost and
accuracy degradation caused by model compression. Our
main contributions in this work can be summarized as:

• A iterative statistical weight ternarization method is
used to optimize the layer-wise scaling factor to miti-
gate accuracy degradation caused by aggressive weight



ternarization. Such method leads to that the ternar-
ization of ResNet32/44/56 even outperforms full-
precision counterparts by 0.12%, 0.24% and 0.18%
for CIFAR-10 dataset. Moreover, both the ternariza-
tion of AlexNet and ResNet-18 in ImageNet dataset
achieve the best top-1 accuracy compared to recent
similar works, with the same 16X compression rate.

• Different from other existing works that leave the
network’s first and last layers in full-precision, we
ternarize all the convolution and fully-connected lay-
ers, where a very limited accuracy degradation is ob-
served. Such whole network ternarization could bring
large amount of power, area and latency saving for
domain-specific deep CNN accelerators.

• To further mitigate accuracy degradation from the full-
precision baseline, we introduce a residual expansion
methodology. Compared to full-precision network, our
ternarized ResNet-18 even improves top-5 accuracy by
0.61% and degrades top-1 accuracy only by 0.42% for
ImageNet dataset, with 8× model compression rate.
It outperforms the recent ABC-Net by 1.03% in top-
1 accuracy and 1.78% in top-5 accuracy, with 1.25×
higher compression rate.

2. related works

Recently, model compression on deep convolutional
neural network has emerged as one hot topic in the hard-
ware deployment of artificial intelligence. As the most pop-
ular technique, weight quantization techniques are widely
explored in many related works which can significantly
shrink the model size and reduce the computation complex-
ity. Among all those works, DCNN with binary weight is
the most discussed scheme, since it leads to 32x model com-
pression rate. More importantly, it also converts the original
floating-point multiplication (i.e. mul) operations into addi-
tion/subtraction (i.e. add/sub), which could greatly reduce
computational hardware resources and further dramatically
lowers the existing barrier to deploy powerful deep neural
network algorithm into low power resource-limited embed-
ded system. BinaryConnect [4] is the first work of binary
CNN which can get close to the state-of-the-art accuracy on
CIFAR-10, whose most effective technique is to introduce
the gradient clipping. After that, both BWN in [13] and
DoreFa-Net [17] show better or close validation accuracy
on ImageNet dataset. In order to reduce the computation
complexity to the bone, XNOR-Net [13] binarize the input
tensor of the convolution layer which further converts the
add/sub operations into bit-wise xnor and bit-count oper-
ations. Besides weight binarization, there are also recent
works proposing to ternarize the weights of neural network
using trained scaling factors [18]. Leng et. al. employ

ADMM method to optimize neural network weights in con-
figurable discrete levels to trade off between accuracy and
model size [10]. ABC-Net in [12] proposes multiple paral-
lel binary convolution layers to improve the network model
capacity and accuracy, while maintaining binary kernel. All
above discussed aggressive neural network binarization or
ternarization methodologies sacrifice the inference accuracy
in comparison with the full precision counterpart to achieve
large model compression rate and computation cost reduc-
tion.

3. Weight Ternarization Training Method
3.1. Ternarization with iterative statistical scaling

As shown in Fig. 1, our training methodology to obtain
accurate deep Convolutional Neural Network (CNN) 1 with
ternarized weights can be divided into two main steps: Ini-
tialization and iterative weight ternarization training. We
first train a designated neural network model with full pre-
cision weights to act as the initial model for the future
ternarized neural network model. After model initialization,
we retrain the ternarized model with iterative inference (in-
cluding statistical weight scaling, weight ternarization and
ternary weight based inference for computing loss function)
and back-propagation to update full precision weights.

Initialization: The reason that we use a pretrained
model with full precision weights as the initial model comes
in twofold: 1) Fine-tuning from the pretrained model nor-
mally gives higher accuracy for the quantized neural net-
work. 2) Our ternarized model with the initialized weights
from pretrained model converges faster in comparison to
ternarization training from scratch. For practical applica-
tion, engineers will definitely use a full-precision model to
estimate the ideal upper-bound accuracy. Afterwards, var-
ious model compression techniques are applied to the full-
precision model to compress model size while trying to mit-
igate accuracy loss as well.

Iterative weight ternarization training: After loading
the full-precision weights as initialization state, we start
to fine-tune the ternarized CNN model. As described in
Fig. 1, there are three iterative steps for the following train-
ing, namely, 1©-statistical weight scaling and weight ternar-
ization, 2©-ternary weight based inference for loss function
computation and 3©-back propagation to update full preci-
sion weights.

1© will first ternarize current full precision weights and
compute the corresponding scaling factor based on current
statistical distribution of full precision weight. For weight
ternarization (i.e. -1, 0, +1), we adopt the variant stair-
case ternarization function, which compares the full preci-
sion weight with the symmetric threshold ±∆th [11]. Such

1In this work, all the convolution kernels and fully-connected layers do
not have bias term, excluding the last layer.
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Figure 1. The training scheme of ternarized CNN model. 1©- 3© are iteratively operated during the training.

weight ternarization function in the forward path for infer-
ence can be mathematically described as:

Forward : w′
l =

{
α× Sign(wl,i) |wl,i| ≥ ∆th

0 |wl,i| < ∆th

(1)

where wl denotes the full precision weight tensor of layer
l, w′

l is the weight after ternarization. We set the scaling
factor as:

α = E(|wl,i|), ∀{i
∣∣|wl,i| ≥ ∆th} (2)

which statistically calculates the mean of absolute value of
designated layer’s full precision weights that are greater
than the threshold ∆th. Unlike TWN uses ∆th = 0.7 ×
E(wl) as threshold, we set ∆th = β × max(|wl|) as
threshold [11, 18]. The reason is that, for each training
iteration, the weight update causes large value drifting of
E(wl), which correspondingly leads to unstable ∆th. In
this work, we employ single scaling factor for both positive
and negative weights, since such symmetric weight scaling
factor can be easily extracted and integrated into follow-
ing Batch Normalization layer or ReLU activation function
(i.e., both perform element-wise function on input tensor)
for the hardware implementation.

Then, in 2©, the input mini-batch takes the ternarized
model for inference and calculates loss w.r.t targets. In this
step, since all of the weights are in ternary values, all the
dot-product operations in layer l can be expressed as:

xTl ·w′
l = xTl · (α ·Tern(wl)) = α · (xTl ·Tern(wl)) (3)

where xl is the vectorized input of layer l. Since
Tern(wl,i) ∈ {−1, 0,+1}, xTl · Tern(wl) can be eas-
ily realized through addition/subtraction without multi-bit
or floating point multiplier in the hardware, which greatly
reduces the computational complexity.

In 3©, the full precision weights will be updated dur-
ing back-propagation. Then, the next iteration begins to
re-compute weight scaling factor and ternarize weights as

described in step- 1©. Meanwhile, since the ternarization
function owns zero derivatives almost everywhere, which
makes it impossible to calculate the gradient using chain
rule in backward path. Thus, the Straight-Through Estima-
tor (STE) [1] [17] of such ternarization function in the back-
propagation is applied to calculate the gradient as follow:

Backward :
∂g

∂w
=

{
∂g
∂w′ if |w| ≤ 1

0 otherwise
(4)

where the gradient clipping prevents the full precision
weight growing too large and stabilize the threshold β ×
max(|wl|) during training (i.e., fine-tuning), thus leading
to higher inference accuracy ultimately.

3.2. Residual expansion to improve accuracy

As the aforementioned discussion in the introduction,
works like DoreFa-net [6, 17] adopt the multilevel quan-
tization scheme to preserve the model capacity and avoid
the accuracy degradation caused by extremely aggressive
(i.e. binary/ternary) weight quantization. Since our main
objective is to totally remove floating point multiplication
and only use addition/subtraction to implement the whole
deep CNN, while minimizing accuracy degradation caused
by weight ternarization. We propose a Residual Expanded
Layer (REL) as the remediation method to reduce accuracy
degradation. As depicted in Fig. 2, we append one REL
over the convolution layers and fully-connected layers in
the original network structure, where the expansion factor
Tex is 2 in this case. We use Conv and Convr to denote
the original layer and the added REL respectively. Both
Conv and Convr are ternarized from the identical full preci-
sion parameters. During training, the network structure with
RELs follow the same procedures as discussed in Fig. 1.
The only difference is that Conv and Convr has two differ-
ent threshold factors (e.g., β = {0.05, 0.1} are in this work
for Tex = 2). We could append more RELs for compact
CNN with low network redundancy.

The appended REL equivalently introduces more num-
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Figure 2. The block diagram of (top) original network topology and (bottom) the network with residual expansion to further compensate
the accuracy degradation. In this figure, the expansion factor Tex is 2.

ber of levels to each kernel. Assuming two threshold factors
a, b for Conv and Convr layers, where a > b, then we can
formulate their computation as:

xT ·w′+xT ·w′
r = xT ·(α·Tern

β=a
(w)+αr ·Tern

β=b
(wr)) (5)

where the function α ·Tern
β=a

(w) +αr ·Tern
β=b

(wr) is equiv-

alent to a multi-threshold function that divides the element
in w into levels of γ = {−α− αr,−α, 0, α, α+ αr}, with
thresholds {−b,−a, a, b}. Enlarging the expansion factor
Tex will equivalently introduce more number of levels for
the weights and recover the ternarized model capacity to-
wards its full-precision baseline. However, compared to the
case that directly use a multi-bit kernels, the actual convo-
lution kernel is still in ternary format and thus no multi-
bit multiplication is needed (see more discussions in Sec-
tion 5.3).

4. Experiments
In this work, all experiments are performed under the

framework of Pytorch. The performance of our neural
network ternarization methodology is examined using two
datasets: CIFAR-10 and ImageNet. Other small datasets
like MNIST and SVHN are not studied here since other re-
lated work [11, 17] can already obtain close or even no ac-
curacy loss.

4.1. CIFAR-10

To impartially compare our ternarization method with
[18], we choose the same ResNet-20, 32, 44, 50 (type-A
parameter free residual connection) [7] as the testing neural
network architecture on CIFAR-10 dataset. CIFAR-10 con-
tains 50 thousands training samples and 10 thousands test
samples with 32 × 32 image size. The data augmentation
method is identical as used in [7]. For fine-tuning, we set
the initial learning rate as 0.1, which is scheduled to scale by
0.1 at epoch 80, 120 and 160 respectively. Note that, both
the first and last layer are ternarized during the training and
test stage.

we report the CIFAR-10 inference accuracy as listed in
Table 1. It can be seen that only ternarized ResNet-20 gets
minor (0.64%) accuracy degradation, while all the other

deeper networks like ResNet-32, 44, 56 actually outperform
the full precision baseline with 0.12%, 0.24% and 0.18%,
respectively. It shows that a more compact neural network,
like ResNet20, is more likely to encounter accuracy loss,
owing to the network capacity is hampered by this aggres-
sive model compression. Similar trend is also reported in
TTN [18]. Meanwhile, except ResNet56, other accuracy
improvements of our method are higher. Note that, the im-
provement is computed as the accuracy gap between pre-
trained full precision model and corresponding ternarized
model. Our pre-trained full precision model accuracy is
slightly different even with the same configurations.

Table 1. Inference accuracy of ResNet on CIFAR-10 dataset

ResNet20 ResNet32 ResNet44 ResNet56

TTN [18] FP 91.77 92.33 92.82 93.2
Tern 91.13 92.37 92.98 93.56
Gap -0.64 +0.04 +0.16 +0.36

our work
FP 91.7 92.36 92.47 92.68

Tern 91.65 92.48 92.71 92.86
Gap -0.05 +0.12 +0.24 +0.18

4.2. ImageNet

In order to provide a more comprehensive experimen-
tal results on large dataset, we examine our model ternar-
ization techniques on image classification task with Ima-
geNet [14] (ILSVRC2012) dataset. ImageNet contains 1.2
million training images and 50 thousands validation im-
ages, which are labeled with 1000 categories. For the data
pre-processing, we choose the scheme adopted by ResNet
[7]. Augmentations applied to the training images can be
sequentially enumerated as: 224 × 224 randomly resized
crop, random horizontal flip, pixel-wise normalization. All
the reported classification accuracy on validation dataset
is single-crop result. Beyond that, similar as other pop-
ular model quantization works, such as XNOR-Net [13],
DoreFa-Net [17] and TTN [18], we first keep the first and
last layer in full precision (i.e. 32-bit float) and ternarize the
remaining layers for fair comparison. In addition of that, we
also conduct experiments to fully ternarize the whole net-
work. Thus in this case, the weight parameters of the whole
network is in ternary format.
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Figure 3. Train and validation (top-1) accuracy of AlexNet on Im-
ageNet

4.2.1 AlexNet:

We first present the experimental results and its analysis
on AlexNet, which is similar as the variant AlexNet model
used by DoreFa-Net [17] and TTN [18]. The AlexNet in
this work does not include Local-Response-Normalization
(LRN) [8]. We apply a batch normalization layer after each
convolution and fully-connected layer. The dropout layer is
removed, since we find that it actually hampers the perfor-
mance of fine-tuning of ternarized model from its full preci-
sion counterpart. A possible reason is that dropout method
randomly deactivates some weighted connections. However
our kernel scaling factor is calculated with respect to the
weight distribution of entire layer.

We first train the full precision AlexNet with the afore-
mentioned data augmentation method. SGD with momen-
tum = 0.9 is taken as the optimizer. The initial learning rate
is 0.1 which is scheduled with decay rate of 0.1 at epoch 45
and 65. Batch size is set to 256, and weight decay is 1e-
4. For fine-tuning ternarized AlexNet from the pre-trained
full-precision model, we alter the optimizer to Adam. The
initial learning rate is set to 1e-4 and scaled by 0.2, 0.2 and
0.5 at epoch 30, 40 and 45 respectively. Batch size is 256 as
the full-precision model. Since low-bit quantization could
also be considered as a strong regularization techniques,
weight decay is expected to be at small value or even zero.
Here we set the weight decay as 5e-6.

We here report the accuracy on ImageNet validation set
including our work and other recently published works with
the state-of-the-art performance in Table 2. Note that, we
mark out the quantization state of the first layer and last
layer for various methods. For works without such discus-
sion in the paper and no released code, we consider that they
configure the first and last layer in full precision (marked
with *). We are confident in such assumption since we
double checked the works they compared in their published
papers are with first- and last-layer in full precision. The
results show that our work achieves the best accuracy com-
pared to most recent works. In comparison to the previous

Table 2. Validation accuracy of AlexNet on ImageNet using var-
ious model quantization methods. FP, Bin., Tern. denote full-
precision, binary and ternary respectively.

Quantize
scheme

First
layer

Last
layer

Accuracy
(top1/top5)

Comp.
rate

DoreFa-Net [17, 18] Bin. FP FP 53.9/76.3 ∼32×
BWN [13] Bin. FP FP 56.8/79.4 ∼32×

ADMM [10] Bin. FP* FP* 57.0/79.7 ∼32×
TWN [10, 11] Tern. FP FP 57.5/79.8 ∼16×
ADMM [10] Tern. FP* FP* 58.2/80.6 ∼16×

TTN [18] Tern. FP FP 57.5/79.7 ∼16×
Full precision - FP FP 61.78/82.87 1×

this work Tern. FP FP 58.59/80.44 ∼16×
this work Tern. Tern Tern 57.15/79.42 ∼16×

best result reported by ADMM [10], our work improves the
ADMM binary scheme and ternary scheme by 1.59% and
0.39% respectively.

Furthermore, different from previous works that all pre-
serve the weights of first and last layer in full-precision,
we also conduct experiments to fully ternarize the whole
network. Such ternarization leads to a further 1.44% top-
1 accuracy drop. For a general purpose processor, like
CPU/GPU, the performance improvement by ternarizing
the whole network is not quite huge since the parameter
size reduction and computation cost reduction are relatively
small. However, for a domain-specific neural network ac-
celerator, like ASIC and FPGA, ternarizing the entire net-
work means no specific convolution cores are needed to
perform Multiplication and Accumulation (MAC) opera-
tions [2]. It will save large amount of power, area and other
on-chip hardware resources, which further improve the sys-
tem performance. We will provide more quantitative analy-
sis about this issue in the later discussion section.

4.2.2 ResNet:

Various works [16, 18] have drawn a similar conclusion
that, under the circumstance of using identical model com-
pression technique, accuracy degradation of the compressed
model w.r.t its full-precision baseline will be enlarged when
the model topology becomes more compact. In other words,
neural network with smaller model size is more likely
to encounter accuracy degradation in weight compression.
Meanwhile, since neural network with residual connections
is the main stream of deep neural network structure, we also
employ the compact ResNet-18 (type-b residual connection
in [7]) as another benchmark to demonstrate that our ternar-
ization method could achieves the best state-of-the-art per-
formance. The full-precision ResNet18 model 2 released by
pytorch framework is used as the baseline and pretrained
model in this work. The data augmentation method is same
as we introduced in Section 4.2.1 for AlexNet.

2https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py



Table 3. Validation accuracy (top1/top5 %) of ResNet-18b [7] on
ImageNet using various model quantization methods.

Quan.
scheme

First
layer

Last
layer

Accuracy
(top1/top5)

Comp.
rate

BWN [13] Bin. FP FP 60.8/83.0 ∼32×
ABC-Net [12] Bin. FP* FP* 68.3/87.9 ∼6.4×
ADMM [10] Bin. FP* FP* 64.8/86.2 ∼32×
TWN [10, 11] Tern. FP FP 61.8/84.2 ∼16×

TTN [18] Tern. FP FP 66.6/87.2 ∼16×
ADMM [10] Tern. FP* FP* 67.0/87.5 ∼16×
Full precision - FP FP 69.75/89.07 1×

this work Tern. FP FP 67.95/88.0 ∼16×
this work Tern. Tern Tern 66.01/86.78 ∼16×

As the simulation results listed in Table 3, ResNet-18b
[7] with our ternarization scheme shows 0.95% and 0.5%
higher top-1 and top-5 accuracy, respectively, compared to
previous best result of ADMM [10] with equal compression
rate (16×). ABC-Net [12] has ∼ 0.3% higher top-1 accu-
racy over our work, but with a cost of 2.5 times larger model
size. Moreover, our work save∼60% computation owing to
the sparse kernel after ternarization. Similar as in AlexNet,
if we further ternarize the first and last layer, both the top-1
and top-5 accuracy of ResNet-18 degrades.

Table 4. Inference accuracy (Top1/Top5 %) of ternarized ResNets
on ImageNet dataset

ResNet18 ResNet34 ResNet50 ResNet101

FP 69.75/89.07 73.31/91.42 76.13/92.86 77.37/93.55
Tern 66.01/86.78 70.95/89.89 74.00/91.77 75.63/92.49
Gap -3.74/-2.29 -2.36/-1.53 -2.13/-1.09 -1.74/-1.06

Moreover, we conduct a series of deeper residual net-
works (ResNet-34, 50, 101) in addition to the ResNet-18.
As listed in Table 4, the accuracy gap between a ternarized
model and its full-precision counterpart is reduced when
network goes deeper. Such observation is in consistent with
the experiments on the CIFAR-10 dataset.

4.2.3 Improve accuracy on ResNet with REL

We introduce the Residual Expansion Layer (REL) tech-
nique to compensate the accuracy loss, which can still ben-
efit from the weight ternarization in model size and com-
putation reduction, and the multiplication elimination for
convolution and fully-connected layers. In order to show
that such residual expansion can effectively reduce the ac-
curacy gap between ternarized model and full-precision
baseline, we report the validation accuracy of expanded
residual ResNet18 on ImageNet in Table 5. When expan-
sion factor Tex is 2 and two thresholds β = {0.05, 0.1}
are used, we succeeded to further shrink the accuracy gap
to -1.7%/-1.03%. When the Tex is increased to 4 (β =

{0.05, 0.1, 0.15, 0.2} ), the accuracy gap is almost negligi-
ble.

Table 5. Validation accuracy (top1/top5 %) of ResNet-18b on Im-
ageNet with/without residual expansion layer (REL).

First
layer

Last
layer

Accuracy
(top1/top5)

Accuracy
gap

Comp.
rate

Full precision FP FP 69.75/89.07 -/- 1×
Tex=1 FP FP 67.95/88.0 -1.8/-1.0 ∼ 16×
Tex=1 Tern Tern 66.01/86.78 -3.74/-2.29 ∼ 16×
Tex=2 FP FP 69.33/89.68 -0.42/+0.61 ∼ 8×
Tex=2 Tern Tern 68.05/88.04 -1.70/-1.03 ∼ 8×
Tex=4 Tern Tern 69.44/88.91 -0.31/-0.16 ∼ 4×
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Figure 4. The accuracy evolution curve of ternarized ResNet-18b
on ImageNet with residual expansion. (a) First and last layer in
full-precision; (b) First and last layer are ternarized

The training and test accuracy evolution accuracy of
ResNet18 with all the configurations listed in Table 5 are
plotted in Fig. 4. Based on our observation, whether imple-
menting ternarization of the first and last layer does have
a significant effect on the training process and accuracy.
Ternarizing the first and last layer of ResNet18 (Fig. 4b)
causes large validation accuracy fluctuation during training
compared to the experiments that keep the first and last layer
in full precision (Fig. 4a). As shown in Fig. 4b, the vali-
dation accuracy curve with residual expansion alleviate the
fluctuation and smooth the curve.

Beyond that, we further explore the effect of ternariza-
tion process of neural network with the assistance of kernel
visualization. Since we also ternarize the first convolution
layer of ResNet18, the input channel-0 is used as an exam-
ple to study the weight transformation during weight ternar-
ization as shown in Fig. 5. Kernels plotted in Fig. 5a are
from the full-precision pretrained model, which are taken as
the initial weights. After fine-tuning the model for weight
ternarization, the full-precision weights (i.e., the full preci-
sion weight is kept for back-propagation) shown in Fig. 5b
still keep the similar patterns as in the pretrained model.
During inference in validation stage, kernels in Fig. 5b are
ternarized with two different threshold factors, β = 0.05
and β = 0.1 for the original layer Conv and its REL Convr



(a) Full-precision kernel before
fine-tuning

(b) Full-precision kernel after fine-
tuning

(c) Ternarized kernel with thresh-
old factor β = 0.05.

(d) Ternarized kernel with thresh-
old factor β = 0.1.

Figure 5. Kernel visualization for the first layer (channel 0) of
ResNet18 before and after ternarization.

respectively. As seen in Fig. 5c and Fig. 5d, both ternar-
ized kernels, to some extent, preserve the features from full
precision model. Ternarized kernels with larger threshold
factor only keep the connection with higher weight inten-
sity. Thus, the residual expansion layer with higher thresh-
old factor will lead to higher layer sparsity, and only a very
small portion weights (i.e., non-zero value) will use the
computing resources to perform network inference.

5. Ablation study and discussion
5.1. Ablation study

Table 6. Validation accuracy of ResNet-18b on ImageNet.
Accuracy Comp. rate

Baseline: Full precision 69.75/89.07 1×
TW 57.48/81.15 ∼16×

TW+ICS (β = 0.05) 65.08/86.06 ∼16×
TW+ICS (β = 0.1) 64.78/86.06 ∼16×
TW+ICS (β = 0.2) 57.09/81.01 ∼16×

TW+FT 64.94/86.13 ∼16×
TW+ICS+FT (β = 0.05) 66.01/86.78 ∼16×

TW+ICS+FT+REL (β = {0.05, 0.1}) 68.05/88.04 ∼8×

In order to show the effectiveness of the proposed meth-
ods, we present a fair ablation study (Table 6) that isolates
multiple factors which are listed as follow: 1) TW: directly
training the Ternarized Weight (TW) from scratch without
Iteratively Calculated Scaling factors (ICS); 2) TW+ICS:
Training the ternarized network from scratch with the vary-

ing scaling factor (β=0.05, 0.1 and 0.2); 3) TW+FT: fine
tuning (FT) the ternarized weight. It shows that using ICS
and training from scratch is close to the performance of fine-
tuning the model without ICS. 4) TW+ICS+FT: Fine-tuning
the the model with ICS further improves the accuracy. 5)
TW+ICS+FT+REL: incorporating our proposed REL tech-
niques leads to almost no accuracy loss.

5.2. Deep CNN density examination
Table 7. Density variation of first and last layer before/after fine-
tuning

First layer Last layer Average
densityBefore After Before After

AlexNet 36.3% 53.6% 62.8% 67.5% 41.1%

ResNet18 41.7% 52.2% 54.8% 68.3% 40.1%

Let us assume the trained sparsity (sparsity=1-density) of
the designated layer is correlated to its redundancy. Fig. 6
depicts the weight density distribution of all the convolu-
tion and fully-connected layers in AlexNet and ResNet for
the cases of before and after the model ternarization. As
shown in both Fig. 6a and Fig. 6b, the weight density of first
and last layer is raised to a higher level after ternarization in
comparison to their initial density. Here the density on pre-
trained model refers to the neural network that initialized
from the full-precision pretrained model, then we directly
apply our ternarization method as introduced in Section 3
without fine-tuning the weights. We calculate the average
density of all the convolution and fully-connected layers,
which are reported in Table 7. It shows that after ternariza-
tion, the density of first and last layer is much higher than
the average density and other layers. A potential method
to further compress network model is to use the density as
an indicator to choose different expansion factors for each
each layer.

5.3. REL versus multi-bit weight
Table 8. Inference accuracy of ResNet-18 on ImageNet with multi-
bit [17] weight or REL.

Multi-bit [17] REL (this work)

Config. 3-bit tex=1 tex=2
Accuracy 65.70/86.82 66.01/86.78 68.05/88.04

Comp. rate 10.7× 16× 8×

In comparison to directly using multiple bits (multi-bit)
weight, using REL is advantageous in terms of both ac-
curacy and hardware implementations. First, REL shows
better performance over the multi-bit method adopted from
Dorefa-Net [17] on ImageNet. Second, from the hard-
ware perspective, REL preserves all network weights in the
ternary format (i.e. -1, 0, +1), enabling the implementation
of convolutions through sparse addition operations without
multiplication. Increasing the number of expansion layers
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Figure 6. Density distribution of convolution and fully-connected layers in (a) AlexNet and (b) ResNet-18 structure. The weight density of
pretrained model is when the network just load the parameters from pretrained model without fine-tuning. Ternarized model: fl=FP, ll=FP
refers the density distribution of the ternarized model with first and last layer in full precision. Ternarized model: fl=Tern., ll=Tern. denotes
that the density distribution of the ternarized model with first and last layer in ternary representation.

(tex) merely requires more convolution kernels when one
deploys the network in FPGA/ASIC. It is noteworthy that
the REL with larger threshold factor owns higher sparsity,
which requires less computational resources. On the con-
trary, when more bits are added in multi-bit, the convolu-
tion computation goes back to multiplication and addition
operations, consuming more energy and chip area. Finally,
both our work (Section 5.2) and the deep compression [6]
show that a deep neural network has different redundancies
from layer to layer. If one employs the multi-bit scheme,
we have to re-design the computing hardware with differ-
ent bit-widths for the layers. Beyond that, since zero-value
weights in REL with smaller threshold will be stay in zero in
REL with larger threshold (as shown in Fig. 5c and Fig. 5d),
the model compression rate can be further improved with
proper weight sparse encoding method.

5.4. Hardware resource utilization efficiency

Table 9. FPGA resource utilization (Kintex-7 XC7K480T) for
AlexNet last layer
Weight

type
MACs LUT (slices) DSP (slices)

Multiplier Adder required available required available

FP 100 100 49600 74650 200 1920
Tern. 0 90 23490 74650 0 1920

As we previously discussed in Section 4.2.1, fully ternar-
izing the first and last layer is greatly beneficial for devel-
oping the corresponding hardware accelerator on FPGA or
ASIC, owing to the elimination of floating point convolu-
tion computing core. Here in this work, we analyze the de-
ployment of the last fully connected layer of AlexNet into a
Xilinx high-end FPGA (Kintex-7 XC7K480T) as an exam-
ple. As reported by [5], floating-point adder cost 261 LUT
slices on Kintex-7 , while the floating-point multiplier takes
235 LUT slices with additional 2 DSP48Es. The weights of
last fully-connected layer in AlexNet is in the dimension of
4096× 1000, which requires 1000 MACs [3] if performing

the computation in the extreme parallel manner. However,
due to the FPGA resource limitation, we consider the design
scheme that allows 100 MACs for floating-point weight
convolution, while the rest resources can only accommo-
date 90 MACs for ternary weight convolution. For the neu-
ral network with both ternary and full precision weights,
balancing the hardware resources to build MAC cores for
ternary and full precision weight becomes extremely diffi-
cult. Increasing the number of ternary weight MAC cores
does improve the hardware resource utilization. However,
it has to reduce the allocated floating point MACs, which at
the same time reduces the computation parallelism and thus
increases whole system latency. On the contrary, if we keep
the current hardware resource allocation plan, the hardware
utilization efficiency will be extremely low especially when
the networks are going deeper. Then, it can be clearly seen
that fully ternarizing the whole network is extremely im-
portant for algorithm deployment in resource limited em-
bedded system although the theoretical model compression
rate does not increase too much.

6. Summary
In this work, we have explicitly optimize current DNN

ternarization scheme with techniques like statistical weight
scaling and REL. On image classification task, a se-
ries of comprehensive experiments are conducted to show
that our method can achieve the state-of-the-art accuracy
on both small dataset like CIFAR-10, and large dataset
like ImageNet. Beyond that, we examined the accuracy
with/without the first&last layer ternarization. Owing to
that the statistical weight scaling are used through the en-
tire network, our ternarized network does not encounter se-
rious accuracy degradation even with ternarized weight for
first&last layer.
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